Today in the world the GPS(Global Positioning System) is one of the most useful invention used for finding our path or position, which is not only used by military and other commercial aero planes, but also for the general purpose as it is used in the new cars and other mobile devices to locate our current position.
The Global Positioning System (GPS) is a U.S. space-based radio navigation system that provides reliable positioning, navigation, and timing services to civilian users worldwide on a continuous basis -- freely available to all. For anyone with a GPS receiver, the system will provide location and time. GPS provides accurate location and time information for an unlimited number of people in all weather, day and night, anywhere in the world.
The GPS is made up of three parts: satellites orbiting the Earth; control and monitoring stations on Earth; and the GPS receivers owned by users. GPS satellites broadcast signals from space that are picked up and identified by GPS receivers. Each GPS receiver then provides three-dimensional location (latitude, longitude, and altitude) plus the time.
Individuals may purchase GPS handsets that are readily available through commercial retailers. Equipped with these GPS receivers, users can accurately locate where they are and easily navigate to where they want to go, whether walking, driving, flying, or boating. GPS has become a mainstay of transportation systems worldwide, providing navigation for aviation, ground, and maritime operations. Disaster relief and emergency services depend upon GPS for location and timing capabilities in their life-saving missions. Everyday activities such as banking, mobile phone operations, and even the control of power grids, are facilitated by the accurate timing provided by GPS. Farmers, surveyors, geologists and countless others perform their work more efficiently, safely, economically, and accurately using the free and open GPS signals.
GPS is funded by and controlled by the U. S. Department of Defense (DOD). While there are many thousands of civil users of GPS world-wide, the system was designed for and is operated by the U. S. military. GPS provides specially coded satellite signals that can be processed in a GPS receiver, enabling the receiver to compute position, velocity and time. Four GPS satellite signals are used to compute positions in three dimensions and the time offset in the receiver clock
The nominal GPS Operational Constellation consists of 24 satellites that orbit the earth in 12 hours. There are often more than 24 operational satellites as new ones are launched to replace older satellites. The satellite orbits repeat almost the same ground track (as the earth turns beneath them) once each day. The orbit altitude is such that the satellites repeat the same track and configuration over any point approximately each 24 hours (4 minutes earlier each day). There are six orbital planes (with nominally four SVs in each), equally spaced (60 degrees apart), and inclined at about fifty-five degrees with respect to the equatorial plane. This constellation provides the user with between five and eight SVs visible from any point on the earth.
Here's how GPS works in five logical steps:
The basis of GPS is "triangulation" from satellites. We're using the word "triangulation" very loosely here because it's a word most people can understand, but purists would not call what GPS does "triangulation" because no angles are involved. It's really "trilateration." Trilateration is a method of determining the relative positions of objects using the geometry of triangles.
To "triangulate," a GPS receiver measures distance using the travel time of radio signals.
To measure travel time, GPS needs very accurate timing which it achieves with some tricks.
Along with distance, you need to know exactly where the satellites are in space. High orbits and careful monitoring are the secret.
Standard Positioning Service (SPS)
Civil users worldwide use the SPS without charge or restrictions. Most receivers are capable of receiving and using the SPS signal. The SPS accuracy is intentionally degraded by the DOD.
SPS Predictable Accuracy
100 meter horizontal accuracy
156 meter vertical accuracy
340 nanoseconds time accuracy
These GPS accuracy figures are from the 1999 Federal Radio navigation Plan. The figures are 95% accuracies, and express the value of two standard deviations of radial error from the actual antenna position to an ensemble of position estimates made under specified satellite elevation angle (five degrees) and PDOP (less than six) conditions.
For horizontal accuracy figures 95% is the equivalent of 2drms (two-distance root-mean-squared), or twice the radial error standard deviation. For vertical and time errors 95% is the value of two-standard deviations of vertical error or time error. Receiver manufacturers may use other accuracy measures. Root-mean-square (RMS) error is the value of one standard deviation (68%) of the error in one, two or three dimensions. Circular Error Probable (CEP) is the value of the radius of a circle, centered at the actual position that contains 50% of the position estimates. Spherical Error Probable (SEP) is the spherical equivalent of CEP, that is the radius of a sphere, centered at the actual position, that contains 50% of the three dimension position estimates. As opposed to 2drms, drms, or RMS figures, CEP and SEP are not affected by large blunder errors making them an overly optimistic accuracy measure
Some receiver specification sheets list horizontal accuracy in RMS or CEP and without Selective Availability, making those receivers appear more accurate than those specified by more responsible vendors using more conservative error measures.
GPS Satellite Signals
The SVs transmit two microwave carrier signals. The L1 frequency (1575.42 MHz) carries the navigation message and the SPS code signals. The L2 frequency (1227.60 MHz) is used to measure the ionospheric delay by PPS equipped receivers. Three binary codes shift the L1 and/or L2 carrier phase.
The C/A Code (Coarse Acquisition) modulates the L1 carrier phase. The C/A code is a repeating 1 MHz Pseudo Random Noise (PRN) Code. This noise-like code modulates the L1 carrier signal, "spreading" the spectrum over a 1 MHz bandwidth. The C/A code repeats every 1023 bits (one millisecond). There is a different C/A code PRN for each SV. GPS satellites are often identified by their PRN number, the unique identifier for each pseudo-random-noise code. The C/A code that modulates the L1 carrier is the basis for the civil SPS.
The P-Code (Precise) modulates both the L1 and L2 carrier phases. The P-Code is a very long (seven days) 10 MHz PRN code. In the Anti-Spoofing (AS) mode of operation, the P-Code is encrypted into the Y-Code. The encrypted Y-Code requires a classified AS Module for each receiver channel and is for use only by authorized users with cryptographic keys. The P (Y)-Code is the basis for the PPS. The Navigation Message also modulates the L1-C/A code signal. The Navigation Message is a 50 Hz signal consisting of data bits that describe the GPS satellite orbits, clock corrections, and other system parameters.
Position, and Time from GPS
Code Phase Tracking (Navigation)
The GPS receiver produces replicas of the C/A and/or P (Y)-Code. Each PRN code is a noise-like, but pre-determined, unique series of bits. The receiver produces the C/A code sequence for a specific SV with some form of a C/A code generator. Modern receivers usually store a complete set of precomputed C/A code chips in memory, but hardware, shift register, implementation can also be used.
The C/A code generator produces a different 1023 chip sequence for each phase tap setting. In a shift register implementation the code chips are shifted in time by slewing the clock that controls the shift registers. In a memory lookup scheme the required code chips are retrieved from memory. The C/A code generator repeats the same 1023-chip PRN-code sequence every millisecond. PRN codes are defined for 32 satellite identification numbers.
The receiver slides a replica of the code in time until there is correlation with the SV code. If the receiver applies a different PRN code to an SV signal there is no correlation. When the receiver uses the same code as the SV and the codes begin to line up, some signal power is detected. As the SV and receiver codes line up completely, the spread-spectrum carrier signal is de-spread and full signal power is detected. A GPS receiver uses the detected signal power in the correlated signal to align the C/A code in the receiver with the code in the SV signal. Usually a late version of the code is compared with an early version to insure that the correlation peak is tracked.
A phase locked loop that can lock to either a positive or negative half-cycle (a bi-phase lock loop) is used to demodulate the 50 HZ navigation message from the GPS carrier signal. The same loop can be used to measure and track the carrier frequency (Doppler shift) and by keeping track of the changes to the numerically controlled oscillator, carrier frequency phase can be tracked and measured. The receiver PRN code start position at the time of full correlation is the time of arrival (TOA) of the SV PRN at receiver. This TOA is a measure of the range to SV offset by the amount to which the receiver clock is offset from GPS time. This TOA is called the pseudo-range.
Differential GPS (DGPS) Techniques
The idea behind all differential positioning is to correct bias errors at one location with measured bias errors at a known position. A reference receiver, or base station, computes corrections for each satellite signal. Because individual pseudo-ranges must be corrected prior to the formation of a navigation solution, DGPS implementations require software in the reference receiver that can track all SVs in view and form individual pseudo-range corrections for each SV. These corrections are passed to the remote, or rover, receiver which must be capable of applying these individual pseudo-range corrections to each SV used in the navigation solution. Applying a simple position correction from the reference receiver to the remote receiver has limited effect at useful ranges because both receivers would have to be using the same set of SVs in their navigation solutions and have identical GDOP terms (not possible at different locations) to be identically affected by bias errors.
The GPS satellite system
The 24 satellites that make up the GPS space segment are orbiting the earth about 12,000 miles above us. They are constantly moving, making two complete orbits in less than 24 hours. These satellites are traveling at speeds of roughly 7,000 miles an hour. GPS satellites are powered by solar energy. They have backup batteries on board to keep them running in the event of a solar eclipse, when there's no solar power. Small rocket boosters on each satellite keep them flying in the correct path.
Here are some other interesting facts about the GPS satellites (also called NAVSTAR, the official U.S. Department of Defense name for GPS):
The first GPS satellite was launched in 1978.
A full constellation of 24 satellites was achieved in 1994.
Each satellite is built to last about 10 years. Replacements are constantly being built and launched into orbit.
A GPS satellite weighs approximately 2,000 pounds and is about 17 feet across with the solar panels extended.
What's the signal?
GPS satellites transmit two low power radio signals, designated L1 and L2. Civilian GPS uses the L1 frequency of 1575.42 MHz in the UHF band. The signals travel by line of sight, meaning they will pass through clouds, glass and plastic but will not go through most solid objects such as buildings and mountains. A GPS signal contains three different bits of information — a pseudorandom code, ephemeris data and almanac data. The pseudorandom code is simply an I.D. code that identifies which satellite is transmitting information. You can view this number on your Garmin GPS unit's satellite page, as it identifies which satellites it's receiving. Ephemeris data tells the GPS receiver where each GPS satellite should be at any time throughout the day. Each satellite transmits ephemeris data showing the orbital information for that satellite and for every other satellite in the system. Almanac data, which is constantly transmitted by each satellite, contains important information about Factors that can degrade the GPS signal and thus affect accuracy include the following:
Ionosphere and troposphere delays — the satellite signal slows as it passes through the atmosphere. The GPS system uses a built-in model that calculates an average amount of delay to partially correct for this type of error.
Signal multipath — this occurs when the GPS signal is reflected off objects such as tall buildings or large rock surfaces before it reaches the receiver. This increases the travel time of the signal, thereby causing errors.Receiver clock errors — a receiver's built-in clock is not as accurate as the atomic clocks onboard the GPS satellites. Therefore, it may have very slight timing errors.
Orbital errors — also known as ephemeris errors, these are inaccuracies of the satellite's reported location.
Number of satellites visible — the more satellites a GPS receiver can "see," the better the accuracy. Buildings, terrain, electronic interference, or sometimes even dense foliage can block signal reception, causing position errors or possibly no position reading at all. GPS units typically will not work indoors, underwater or underground.
Satellite geometry/shading — this refers to the relative position of the satellites at any given time. Ideal satellite geometry exists when the satellites are located at wide angles relative to each other. Poor geometry results when the satellites are located in a line or in a tight grouping.
Intentional degradation of the satellite signal — Selective Availability (SA) is an intentional degradation of the signal once imposed by the U.S. Department of Defence. SA was intended to prevent military adversaries from using the highly accurate GPS signals. The government turned off SA in May 2000, which significantly improved the accuracy of civilian GPS receivers.
"Where am I going?"
GPS helps you determine exactly where you are, but sometimes important to know how to get somewhere else. GPS was originally designed to provide navigation information for ships and planes. So it's no surprise that while this technology is appropriate for navigating on water, it's also very useful in the air and on the land.
On the Water
It's interesting that the sea, one of our oldest channels of transportation, has been revolutionized by GPS, the newest navigation technology. Trimble introduced the world's first GPS receiver for marine navigation in 1985. And as you would expect, navigating the world's oceans and waterways is more precise than ever.
Today you will find Trimble receivers on vessels the world over, from hardworking fishing boats and long-haul container ships, to elegant luxury cruise ships and recreational boaters. A New Zealand commercial fishing company uses GPS so they can return to their best fishing holes without wandering into the wrong waters in the process.
The High-Tech Fish Finder
The old sonar fish finders have been around for a while, and they're pretty helpful when you want to find a school of rowdy largemouth bass. But what do you do when the ocean is your fishing hole and all those fish are your livelihood? An innovative New Zealand fishing company is using Trimble GPS to help them locate and land the catch of the day.
Scalord Products Ltd. have upgraded to NT200 GPS receivers and the Omnistar Differential GPS service to navigate to and within orange roughly fishing grounds. These fish live on underwater sea mounds and other geological features which are difficult to fish over. The speed and accuracy of the NT200 enables them to position their vessel and gear accurately, and safely fish these small areas.The GPS receiver is interfaced with an acoustic trawl positioning system on two of the boats providing an exact geographical position of the nets. This is not only helpful when looking for a favorite fishing hole, but in avoiding any international boundaries that might be just a few yards off. "It was difficult to fish without GPS," said Sealord's Vessel Manager Richard Wells. "The Differential GPS service has improved its capabilities. We also fish Hoki where tow line accuracy is important. "But GPS navigation doesn't end at the shore.
"Where is everything else?"
It's a big world out there, and using GPS to survey and map it precisely saves time and money in this most stringent of all applications. Today, Trimble GPS makes it possible for a single surveyor to accomplish in a day what used to take weeks with an entire team. And they can do their work with a higher level of accuracy than ever before. Trimble pioneered the technology which is now the method of choice for performing control surveys, and the effect on surveying in general has been considerable. You've seen how GPS pinpoints a position, a route, and a fleet of vehicles. Mapping is the art and science of using GPS to locate items, and then create maps and models of everything in the world. We mean everything - Mountains, rivers, forests and other landforms; Roads, routes, and city streets. Endangered animals, precious minerals and all sorts of resources, Damage and disasters, trash and archeological treasures. GPS is mapping the world. For example, Trimble GPS helped fire fighters respond with speed and efficiency during the 1991 Oakland/Berkeley fire to plot the extent of the blaze and to evaluate damage. In a less urgent yet equally important situation, the city of Modesto, California improved their efficiency and job performance by using GPS and mountain bikes to create a precise map of its network of water resources and utilities.
No comments:
Post a Comment